H2O2 is the transferrable factor mediating flow-induced dilation in human coronary arterioles.
نویسندگان
چکیده
RATIONALE Endothelial derived hydrogen peroxide (H(2)O(2)) is a necessary component of the pathway regulating flow-mediated dilation (FMD) in human coronary arterioles (HCAs). However, H(2)O(2) has never been shown to be the endothelium-dependent transferrable hyperpolarization factor (EDHF) in response to shear stress. OBJECTIVE We examined the hypothesis that H(2)O(2) serves as the EDHF in HCAs to shear stress. METHODS AND RESULTS Two HCAs were cannulated in series (a donor intact vessel upstream and endothelium-denuded detector vessel downstream). Diameter changes to flow were examined in the absence and presence of polyethylene glycol catalase (PEG-CAT). The open state probability of large conductance Ca(2+)-activated K(+) (BK(Ca)) channels in smooth muscle cells downstream from the perfusate from an endothelium-intact arteriole was examined by patch clamping. In some experiments, a cyanogen bromide-activated resin column bound with CAT was used to remove H(2)O(2) from the donor vessel. When flow proceeds from donor to detector, both vessels dilate (donor:68±7%; detector: 45±11%). With flow in the opposite direction, only the donor vessel dilates. PEG-CAT contacting only the detector vessel blocked FMD in that vessel (6±4%) but not in donor vessel (61±13%). Paxilline inhibited dilation of endothelium-denuded HCAs to H(2)O(2). Effluent from donor vessels elicited K(+) channel opening in an iberiotoxin- or PEG-CAT-sensitive fashion in cell-attached patches but had little effect on channel opening on inside-out patches. Vasodilation of detector vessels was diminished when exposed to effluent from CAT-column. CONCLUSIONS Flow induced endothelial production of H(2)O(2), which acts as the transferrable EDHF activating BK(Ca) channels on the smooth muscle cells.
منابع مشابه
Integrative Physiology H2O2 Is the Transferrable Factor Mediating Flow-Induced Dilation in Human Coronary Arterioles
Rationale: Endothelial derived hydrogen peroxide (H2O2) is a necessary component of the pathway regulating flow-mediated dilation (FMD) in human coronary arterioles (HCAs). However, H2O2 has never been shown to be the endothelium-dependent transferrable hyperpolarization factor (EDHF) in response to shear stress. Objective: We examined the hypothesis that H2O2 serves as the EDHF in HCAs to shea...
متن کاملClinical/Translational Research H2O2-Induced Dilation in Human Coronary Arterioles: Role of Protein Kinase G Dimerization and Large-Conductance Ca -Activated K Channel Activation
Rationale: Hydrogen peroxide (H2O2) serves as a key endothelium-derived hyperpolarizing factor mediating flowinduced dilation in human coronary arterioles (HCAs). The precise mechanisms by which H2O2 elicits smooth muscle hyperpolarization are not well understood. An important mode of action of H2O2 involves the oxidation of cysteine residues in its target proteins, including protein kinase G (...
متن کاملActivation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca entry and mitochondrial ROS signaling
Bubolz AH, Mendoza SA, Zheng X, Zinkevich NS, Li R, Gutterman DD, Zhang DX. Activation of endothelial TRPV4 channels mediates flow-induced dilation in human coronary arterioles: role of Ca entry and mitochondrial ROS signaling. Am J Physiol Heart Circ Physiol 302: H634–H642, 2012. First published December 2, 2011; doi:10.1152/ajpheart.00717.2011.—In human coronary arterioles (HCAs) from patient...
متن کاملH2O2-Induced Dilation in Human Coronary Arterioles: Role of Protein Kinase G Dimerization and Large-Conductance Ca -Activated K Channel Activation
Rationale: Hydrogen peroxide (H2O2) serves as a key endothelium-derived hyperpolarizing factor mediating flowinduced dilation in human coronary arterioles (HCAs). The precise mechanisms by which H2O2 elicits smooth muscle hyperpolarization are not well understood. An important mode of action of H2O2 involves the oxidation of cysteine residues in its target proteins, including protein kinase G (...
متن کاملRole for hydrogen peroxide in flow-induced dilation of human coronary arterioles.
Flow-induced dilation (FID) is dependent largely on hyperpolarization of vascular smooth muscle cells (VSMCs) in human coronary arterioles (HCA) from patients with coronary disease. Animal studies show that shear stress induces endothelial generation of hydrogen peroxide (H2O2), which is proposed as an endothelium-derived hyperpolarizing factor (EDHF). We tested the hypothesis that H2O2 contrib...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Circulation research
دوره 108 5 شماره
صفحات -
تاریخ انتشار 2011